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Abstract— This paper evaluates the performance of a demand 
response (DR) system, installed in the remote community of 
Hartley Bay, British Columbia, which is used to reduce fuel 
consumption during periods of peak loads and poor fuel 
efficiency. The DR system, installed to shed load during these 
periods, is capable of shedding up to 15 per cent of maximum 
demand by adjusting wireless variable thermostats and load 
controllers on hot water heaters and ventilation systems in 
commercial buildings. The system was found to be successful in 
reducing demand by up to 35 kW during the DR event period, 
but caused a new, time-shifted “rebound” peak of 30 to 50 per 
cent following each event. A DR "staggering" method is 
introduced as a tool for reducing and delaying rebound 
without affecting occupant comfort and safety. 

In this work, load prediction models based on linear regression 
and averaging of historical data were also developed for 
measuring DR shed and rebound, with models based on 
averaging found to produce more accurate baselines.   

Keywords - Smart Grids; Energy Conservation; Demand 
Response; Load Prediction; Implementation Challenges; Energy 
Management; Energy Control 

I.  INTRODUCTION 

High costs, cost uncertainty and environmental issues 
associated with using diesel fuel for generation are a concern 
in isolated communities [1], where electricity prices are often  
many times that of large utility-connected systems due to 
lack of economy of scale [2]. Therefore, even small 
improvements in utilization of the community electric power 
system can have substantial economic benefits by reducing 
operating costs. One option for improving system efficiency 
and reliability, and the focus of this work, is to use a demand 
response (DR) system to prevent inefficient states of 
generator operation. A smart meter system can be used to 
verify the benefits and develop triggering points [3], [4] and 
an energy management information system (EMIS) can be 
used to plot and measure savings.  

This paper highlights the details of a comprehensive 
demand response program in the Village of Hartley Bay, 

which was run to improve overall electrical generator 
dispatch efficiency by shedding loads during certain peak 
demand periods.  It does this by adjusting wireless controlled 
variable thermostats and load controllers on hot water heaters 
and ventilation systems in commercial buildings. 

The project was conducted in four phases. The first was 
defining the specific problem being addressed by the DR 
program (Section III in this report). The second was deciding 
how success of the program would be measured and how 
baseline demand would be forecasted (Section IV). The third 
phase was running the specified DR program and the final 
phase was analysis of the results and recommendations for 
future DR programs (Sections VI through VIII).   

II. BACKGROUND 

There is a significant body of government and academic 
research surrounding DR, load prediction, and the 
relationship between these two topics. 

A. The Village of Hartley Bay 

The Village of Hartley Bay, located approximately 650 
km North West of Vancouver, BC, is a remote coastal 
community in the Gitga’at Nation.  The community is home 
to 170 residents living in 82 buildings: 62 residential and 20 
commercial/mixed use.  The village is isolated from the main 
electricity distribution network and relies exclusively on 
local diesel generators for electricity.  Since 2008, Hartley 
Bay has been engaged in an energy management initiative 
aimed at reducing greenhouse gas (GHG) emissions.  One 
focus of this initiative is managing all aspects of the 
electrical network including generation, distribution, and 
demand.  Several energy management initiatives have been 
implemented including installation of a wireless network of 
smart meters, monitoring of energy use in real-time using an 
EMIS, lighting, heating and HVAC retrofits and hiring of 
local energy coordinators to manage projects and engage the 
community [5]. 

A DR system was proposed to shed community loads 
during peak periods in order to keep demand below 360 kW 
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and therefore avoid dispatching of the 210 kW generator. In 
the spring of 2010, a DR system consisting of twenty 
variable thermostats and twelve 30-amp load controllers was 
installed in several commercial buildings in the community. 
An audit of the facilities determined that the loads with the 
highest energy usage and the lowest chance of occupant 
disturbance were baseboard heaters, hot water heaters, and 
HVAC systems. In order to further minimize the chance of 
occupant disturbance, a manual DR override was also 
installed. The total demand under DR control is 61.3 kW, or 
approximately 15 per cent of the average maximum 
community demand. The current DR setup in Hartley Bay 
allows for both manual and automatic decision-making. 
Under the manual configuration, a human decision-maker 
must observe and predict periods of peak load and manually 
trigger a DR event using the web interface. The automated 
configuration allows for a regular DR event to be run at a 
certain time of the day and/or certain days of the week [5]. 

B. Consequences of Demand Response 

One well-documented consequence of DR is the 
“rebound effect,” sometimes referred to as the “payback 
effect.” This term describes the tendency of electrical loads 
to produce a demand spike while “catching-up” to normal 
operation immediately after a DR event ends. The magnitude 
of this effect differs depending on the building and 
equipment involved in the DR program.  One field study of 
residential water-heater control in Norway showed an 
average shed of 0.5 kW during DR events, but a rebound in 
the hour following the event of up to 0.28 kW, or 56 per cent 
of the average demand shed [6]. A 2007 Lawrence Berkeley 
National Laboratory (LBNL) paper suggests that the rebound 
effect can be mitigated by bringing the electrical system back 
to normal operating conditions slowly rather than 
immediately after an event (a strategy called “rebound 
avoidance”) [7]. This rebound avoidance strategy is 
incorporated into the load controllers in Hartley Bay, which 
return to normal operation randomly over a 15-minute period 
once the DR event is complete. The thermostats do not have 
this built-in rebound avoidance. 

Another possible consequence of DR is a reduction in 
occupant comfort within the facilities under control. For 
example, a 2011 study of automated control of air 
conditioning and lighting in a Tokyo office building led to 
reductions of between 10 per cent and 23 per cent of peak 
demand, but a reduction in occupant comfort led the authors 
to conclude that a “more acceptable control strategy” would 
need to be developed [8].  

C. Electrical Load Prediction and Forecasting 

Electrical load prediction refers to the output of a 
statistical model, regardless of whether the load being 
modeled occurs in the past, present or future, while 
forecasting specifically refers to the prediction of future 
loads [9]. Several complex statistical models have been 
developed for load prediction, including those that use 
artificial neural networks [10] [11], but this type of modeling 
is beyond the scope of this study. Rather, simpler models 
were examined. 

One popular prediction method is linear regression of 
historical demand data with weather and time-of-week 
inputs. As LBNL points out, regression models are easy to 
interpret and modify, they are not computationally intensive, 
and they tend to compare well against other load prediction 
models [12]. Another prediction method seen in the literature 
uses averaging of historical load data [13].  

A separate LBNL study multiplied the prediction data by 
an “adjustment factor,” defined as the “ratio of the actual to 
the predicted load in the two hours prior to the event 
period,” to correct for forecasting errors early in the data set 
being analyzed. They show that both weather regression and 
historical averaging-based models produce better results 
when this adjustment factor is applied [13]. 

III. UTILITY OF DEMAND RESPONSE 

Electricity in Hartley Bay is generated by three diesel 
generators, one 210 kW and two 420 kW. In October 2009, 
precision fuel flow sensors were installed on the three 
generators and generator efficiency, defined as litres of fuel 
consumed per kWh of electricity produced, was determined. 
The 420 kW generators were shown to have the highest 
efficiencies (0.27 L/kWh or 34 per cent) while the 210 kW 
generator had the lowest efficiency (0.49 L/kWh or an 
average of 19 per cent). It was concluded that, in order to 
maximize the efficiency of the generation system and 
minimize fuel consumption, the 210 kW generator should be 
run as little as possible [1]. 

As demand in the community increases or decreases, 
different generator combinations are dispatched to increase 
or decrease capacity, respectively. An increase in capacity is 
called a generator "pickup,” while a decrease in capacity is 
called a generator "dropout.” In 2010, the generator dispatch 
settings were optimized to reduce fuel consumption while 
maintaining system reliability. The new dispatch settings are 
shown in Table I. Under these settings, the 210 kW generator 
is run when the total community demand drops below 105 
kW or increases beyond 360 kW. An analysis of historical 
energy consumption data shows that, on average, community 
demand exceeds 360 kW only 3687 minutes per year, or 
roughly 0.7 per cent of the time. Based on the generator fuel 
efficiencies measured in [1], avoiding all occurrences of this 
peak demand would save approximately 27,000 L of fuel per 
year, or 5.0 per cent of the annual fuel consumption. 

TABLE I.  HARTLEY BAY GENERATOR DISPATCH SETTINGS [1] 

Capacity Change 
Generator Combination  
(G1 = 210 kW, G2 = 420 

kW) 

Pickup/Dropout 
Power (kW) 

210 kW to 420 kW G1 to G2 120 

420 kW to 210 kW G2 to G1 105 

420 kW to 630 kW G2 to G1 + G2 360 

630 kW to 420 kW G1 + G2 to G2 325 
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IV. MODELING TYPICAL DEMAND 

In order to quantify the results of the DR program, 
baselines were first developed to represent “what would have 
happened” had the DR events not been triggered. Several 
baselines were developed using various prediction models, 
and the most accurate baselines were then selected to 
quantify the experimental results. The prediction models 
used fall into two general categories: 

1) Averaging of historical demand profiles, and 
2) Regression of historical demand with weather and 

time variables 
 

Six representative days were chosen where a demand 
response event was manually triggered for evaluation of the 
various forecasting methods. For each baseline, an 
“adjustment factor” similar to that used in [13] was applied. 
In this case, each baseline was adjusted by a factor equal to 
the ratio of the actual to the predicted load in the 1.75 hours 
prior to the DR event. 

The data predicted by the chosen models were compared 
to the actual data set before and after the DR event (including 
rebound and settling period) to measure the accuracy of each 
baseline. In other words, a perfect baseline, as measured 
according to this methodology, would follow the actual data 
at all times except for between the DR and rebound period. 
The error in the model was quantified using root-mean-
square (RMS) error and mean bias measurements.  

TABLE II.   PREDICTION MODEL ACCURACY 

DR Data Set 
Best Baseline 

Prediction Model 

RMS 
Error 
(kW) 

RMS 
Error 
(%) 

Mean 
Bias 
(kW) 

Total 
Community, 

Average of all 
DR-Days 

Average Non-DR 
Day 

8.60 2.87 -2.5455 

Total 
Community, 

Single DR-Day 
(Feb 24, 2012) 

Median Non-DR 
Day 

17.76 5.77 -1.1883 

Total 
Community, 

Single DR-Day 
(Feb 15, 2012) 

Dec-Jan 2012 
Average 

(Adjusted) 
25.78 7.82 0.8636 

Health Centre, 
Average DR 

Day 

Feb-Mar 2012 
Average Non-DR 
Day (Adjusted) 

2.27 11.09 0.2468 

School, 
Average DR 

Day 

Feb-Mar 2012 
Average Non-DR 
Day (Adjusted) 

0.69 10.56 -0.2449 

Gymnasium, 
Average DR 

Day 

Feb-Mar 2012 
Average Non-DR 

Day 
0.81 10.72 -0.1211 

 

Table II shows the best baseline prediction model along 
with the RMS error and mean bias of the baseline for each of 
the six DR-day data sets. As shown in column 2 of the table, 
in all cases the prediction models based on average (or in one 

case median) historical data performed better than regression 
models. Furthermore, applying an adjustment factor 
improved the baseline in three of the six data sets analyzed. 
This result differs from that in [13], where a similar 
adjustment factor improved all baseline predictions. 

Overall, producing accurate baselines for the Hartley Bay 
load data was a significant challenge as reflected in the 
relatively high RMS error values in Table II. The minute-
level load data showed many high-frequency swings in 
demand (similar in appearance to signal noise) that the 
models were unable to predict, which contributed to the high 
error values. Averaging of load data to filter out these swings 
was considered, but this would have eliminated many short-
lived peaks exceeding 360 kW and skewed the final results. 

V. EXPERIMENTAL DESIGN 

In order to maximize the value of the DR system, 3 years 
of historical community-level demand data was analyzed to 
determine the time-of-day at which demand was most likely 
to exceed 360 kW. The results of this analysis are shown in 
Fig. 1. The chart represents the number of weekday 
occurrences of demand exceeding 360 kW, separated by the 
time-of-day at which they occurred. It is clear from the 
analysis that demand levels greater than 360 kW are most 
likely to occur between the hours of 8:00 to 9:15 and 15:00 
to 20:00.   

 
Fig. 1.  Occurrences of Demand Exceeding 360 kW by Time of Day 
(Weekdays, 3 years of data, 15-minute averaging) 
 

Once the system was commissioned and manually tested 
for several weeks, an automatic schedule was implemented 
to help avoid human error and ensure that DR events were 
run at the same time each DR-day. The schedule was 
originally set to run two, 30-minute load-shed events each 
day: one at 08:00 and one at 17:00. However, during initial 
commissioning and testing some occupants perceived a 
“cold” environment (due to the shedding of the thermostats) 
or a “stuffy” environment (due to suspension of the 
ventilation fan operation) when they first arrived in the 
morning. To avoid this, the schedule was altered to run only 
at 17:00, a time at which most commercial buildings in the 
community see less usage and have been heated by the 
daytime thermostat schedules.  

In both cases, the schedule was run Monday, Wednesday, 
and Friday ("DR-days"), with the other days of the week left 
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as control days (i.e. “normal’ or "non DR-days"). A shed 
period of 30 minutes was chosen in order to minimize any 
effects on building occupants. Manual testing was performed 
throughout the month of January 2012, while the automatic 
schedule ran events on Monday, Wednesday and Friday for 
the entire months of February and March 2012. At the time 
the data was collected, building-level data from the Health 
Centre, School and Gymnasium was available up to March 
16, 2012 and community-level data was available up to 
March 6, 2012. 

Smart meters in the community collected real-time 
energy data and an EMIS was used to organize and export 
the data for the purposes of designing the program and 
verifying the results.  

VI. RESULTS 

Results of the DR program effectiveness were measured 
according to criteria developed by LBNL in [12]. They 
define a "DR residual,” that is the DR event period plus a 
one-hour post-event "rebound period,” and suggest several 
parameters for quantifying the residual. Four of the LBNL 
parameters were chosen to quantify the DR residuals in 
Hartley Bay. The parameters and results for each of the six 
data sets are shown in Table III. Detailed results are 
discussed below for two example cases: the average of all 
DR-days for a single building and a single DR-day for the 
entire community. 

TABLE III.  DR RESIDUAL MEASUREMENT RESULTS 

DR Residual Metric 

DR Data Set 
Average 
Demand 

Shed 
(kW) 

Average 
Rebound 

(kW) 

Peak 
Demand 

Ratio, 
Actual/ 

Predicted 
(%) 

Energy 
Consumpt
ion Ratio, 

Actual/ 
Predicted 

(%) 
Total Community 
Average DR-Day 14.42 14.41 105 101 

Total Community 
Single DR-Day 
(Feb 24, 2012) 

35.87 16.59 112 100 

Total Community 
Single DR-Day 
(Feb 15, 2012) 

26.60 9.99 114 100 

Health Centre 
Average DR Day 16.18 3.34 120 97 

School Average 
DR Day 0.83 1.17 N/A1 105 

Gymnasium 
Average DR Day 2.21 1.15 N/A2 101 

 

                                                           
1,2 The peak demand for the School and Gymnasium occur long before and 
long after the DR event, respectively, so the peak demand ratio is not a 
useful DR metric in this case. 

 

A. Single Building Analysis – Gymnasium 

The Gymnasium average DR-day demand and baseline 
are plotted in Fig. 2.  As discussed in the last section, DR 
events were run at 17:00 to coincide with total community 
peak demand (although the load in this particular building 
experiences a local minimum at 17:00).  A total load of 13.68 
kW is under DR control in the Gymnasium, 88 per cent of 
which is a large hot water tank. The average demand shed in 
the building is 2.21 kW, while the average rebound is 1.15 
kW, or 52 per cent.  The one-sigma confidence interval for 
the prediction values is ± 0.81 kW (approximately ± 11 per 
cent).   

 

 
Fig. 2.  Gymnasium Average DR-Day Demand with Baseline 

 
The shape of the rebound is unusual for this facility. 

After the (expected) initial rebound spike, the load appears to 
produce additional spikes approximately every 30 minutes 
until the end of the data period. These periodic rebound 
spikes may be due to the hot water tank heaters, which use 
basic "on-off" type control, oscillating until the tank 
temperature is re-stabilized. The rebound spikes produced 
several new peaks, each one greater than the peak that would 
have occurred had the DR event not been triggered (i.e. the 
peak predicted by the baseline). 

B. Total Community – Single DR-Day 

Community-wide demand data for a single DR-day in 
February along with the best baseline are shown in Fig. 3.  
Average demand shed is 35.87 kW and average rebound is 
16.59 kW, or 46 per cent. The one-sigma confidence interval 
for the prediction values is ± 17.76 kW (approximately ± 6 
per cent).   

On this particular day, the baseline did not predict a 
demand peak exceeding 360 kW. However, the actual data 
shows a large, consistent shed, implying that the DR system 
would be successful in avoiding a 360 kW-plus peak if it 
were run at the appropriate time. However, due to the 
rebound effect, an even greater peak would be generated in 
the hour following the event. It is clear from this data that 
the rebound effect must be addressed in order for the DR 
system to be successful in avoiding generator step-up. 
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Fig. 3.  Single DR-Day (Fri, Feb 24) Community-Wide Demand with 
Baseline 

VII. REBOUND 

Minimizing rebound can be accomplished in two main 
ways: reducing the magnitude of the rebound or delaying the 
rebound effect until the overall load is low and therefore the 
peak resulting from the rebound does not exceed the daily 
maximum demand value. 

The collected data reveals that the magnitude of the 
rebound depends on at least two variables: the magnitude of 
the average DR shed and the type of equipment under DR 
control. It is therefore important to consider the rebound 
characteristics of different equipment types when assessing a 
building for DR. Also, because rebound is proportional to the 
DR shed (30 per cent to 50 per cent of DR shed in the data 
analyzed), there is a tradeoff between the amount of load that 
is shed and the resulting rebound peak. When designing any 
DR system, effort should be made to minimize the 
magnitude of the DR shed while still meeting the goals of the 
system (e.g. avoiding a certain level of demand). This could 
be accomplished by, for example, triggering only a subset of 
the total DR-controlled buildings at any one time. Delaying 
the rebound can also be accomplished several ways. The 
most obvious is to increase the length of each DR event, 
although event length should be measured against possible 
effects on occupant comfort and safety. Another technique 
that could be used is "staggering" DR events among different 
buildings. If the events are timed correctly each DR shed 
could “cancel out” the rebound from the event before it. 

A. Simulation – Staggering Method 

To demonstrate this “event staggering” concept, a sample 
community consisting of four buildings under DR control 
was modeled.  Actual load data from the Hartley Bay Health 
Centre was used for each building. That is, for the purposes 
of the model, all four buildings were assumed be identical to 
the Health Centre. As a control scenario, a 30-minute 
simultaneous DR event was first modeled in all four 
buildings (see purple line, Fig. 5). Because the buildings are 
modeled after the Health Centre, we know from the peak 
demand ratio in Table III that the resulting rebound generates 
a new peak 20 per cent greater than that in the baseline. 

A second scenario was then modeled, where the DR 
events in each of the four buildings were staggered by 30 
minutes. Fig. 4 shows each building load separately, while 

the green line in Fig. 5 shows the summed total demand of 
the four buildings (i.e. representing the total community 
load). As expected, the net DR shed is lower than in the 
control scenario because each shed event is reduced by the 
rebound of the preceding event. The net rebound, however, is 
delayed by 1.5 hours when compared to the control scenario 
and the magnitude is reduced to the point that it no longer 
creates a new maximum peak. Also, because the DR event 
time remains at 30 minutes for each individual building, it is 
unlikely that the staggered events would affect occupant 
comfort any more than in the control scenario. This 
staggering method has clear potential for reducing the 
rebound effect and therefore maximizing the benefit of DR 
programs. 

 

 
Fig. 4.  Sample Community Load with Staggering (Individual Building 
Loads Shown Separately) 

 

 
Fig. 5.  Sample Community Load with Staggering (All Buildings Summed) 

VIII. CONCLUSIONS 

This project demonstrated that DR systems can be 
implemented in commercial/institutional facilities in a 
remote community and that the system can be remotely 
triggered in a reliable way. Furthermore, the project 
demonstrated the utility of minute-level power metering 
combined with an EMIS in both assessing opportunities for 
DR and evaluating the results. 

Finding an accurate load prediction model for the highly 
variable Hartley Bay demand data was a challenging task and 
even the best models had a high degree of uncertainty.  
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Prediction models based on linear regression of historical 
data with outside temperature performed poorly versus 
models based on historical averaging.  This is likely because 
the heating system in each building responds to changes in 
outside temperature with different time constants, while 
basic linear regression assumes an immediate response time.  
Furthermore, non-weather factors such as occupancy, 
community events, and building and equipment schedules 
likely play a significant role in shaping energy use.  Detailed 
information on these non-weather energy drivers should be 
incorporated into future models. 

Judging by the data sets analyzed, it is unlikely that DR 
events run throughout February and March of 2012 were 
successful in avoiding the generator step-up at the 360 kW 
community-wide demand mark.  This is largely due to the 
rebound effect, which created a post-DR event demand peak 
that exceeded the baseline peak in every data set analyzed.  
This holds true even after the uncertainty of the prediction 
models is taken into account.  For this reason, minimizing 
the effect of the rebound from DR on peak demand is of 
critical concern when implementing a DR program.  This 
could potentially be achieved using the staggering technique 
modeled in this paper, which both reduces and delays post-
DR event rebound without affecting occupant comfort and 
safety. 

In the community of Hartley Bay, unlocking the full 
potential of future DR programs could produce annual fuel 
savings of up to 27,000 L, or 5.0 per cent of the total fuel 
consumption. 
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